The Environment of Fast- and Slow-Moving Tropical Mesoscale Convective Cloud Lines

1984 ◽  
Vol 112 (9) ◽  
pp. 1782-1794 ◽  
Author(s):  
G. M. Barnes ◽  
K. Sieckman
2009 ◽  
Vol 48 (8) ◽  
pp. 1682-1695 ◽  
Author(s):  
Jörg Bendix ◽  
Katja Trachte ◽  
Jan Cermak ◽  
Rütger Rollenbeck ◽  
Thomas Nauß

Abstract This study examines the seasonal and diurnal dynamics of convective cloud entities—small cells and a mesoscale convective complex–like pattern—in the foothills of the tropical eastern Andes. The investigation is based on Geostationary Operational Environmental Satellite-East (GOES-E) satellite imagery (2005–07), images of a scanning X-band rain radar, and data from regular meteorological stations. The work was conducted in the framework of a major ecological research program, the Research Unit 816, in which meteorological instruments are installed in the Rio San Francisco valley, breaching the eastern Andes of south Ecuador. GOES image segmentation to discriminate convective cells and other clouds is performed for a 600 × 600 km2 target area, using the concept of connected component labeling by applying the 8-connectivity scheme as well as thresholds for minimum blackbody temperature, spatial extent, and eccentricity of the extracted components. The results show that the formation of convective clouds in the lowland part of the target area mainly occurs in austral summer during late afternoon. Nocturnal enhancement of cell formation could be observed from October to April (particularly February–April) between 0100 and 0400 LST (LST = UTC − 5 h) in the Andean foothill region of the target area, which is the relatively dry season of the adjacent eastern Andean slopes. Nocturnal cell formation is especially marked southeast of the Rio San Francisco valley in the southeast Andes of Ecuador, where a confluence area of major katabatic outflow systems coincide with a quasi-concave shape of the Andean terrain line. The confluent cold-air drainage flow leads to low-level instability and cellular convection in the warm, moist Amazon air mass. The novel result of the current study is to provide statistical evidence that, under these special topographic situations, katabatic outflow is strong enough to generate mainly mesoscale convective complexes (MCCs) with a great spatial extent. The MCC-like systems often increase in expanse during their mature phase and propagate toward the Andes because of the prevailing upper-air easterlies, causing early morning peaks of rainfall in the valley of the Rio San Francisco. It is striking that MCC formation in the foothill area is clearly reduced during the main rainy season [June–August (JJA)] of the higher eastern Andean slopes. At a first glance, this contradiction can be explained by rainfall persistence in the Rio San Francisco valley, which is clearly lower during the time of convective activity (December–April) in comparison with JJA, during which low-intensity rainfall is released by predominantly advective clouds with greater temporal endurance.


2009 ◽  
Vol 24 (2) ◽  
pp. 555-574 ◽  
Author(s):  
Russ S. Schumacher ◽  
Richard H. Johnson

Abstract This study identifies and examines the common characteristics of several nocturnal midlatitude mesoscale convective systems (MCSs) that developed near mesoscale convective vortices (MCVs) or cutoff lows. All of these MCSs were organized into convective clusters or lines that exhibited back-building behavior, remained nearly stationary for 6–12 h, and produced locally excessive rainfall (greater than 200 mm in 12 h) that led to substantial flash flooding. Examination of individual events and composite analysis reveals that the MCSs formed in thermodynamic environments characterized by very high relative humidity at low levels, moderate convective available potential energy (CAPE), and very little convective inhibition (CIN). In each case, the presence of a strong low-level jet (LLJ) and weak midlevel winds led to a pronounced reversal of the wind shear vector with height. Most of the MCSs formed without any front or preexisting surface boundary in the vicinity, though weak boundaries were apparent in two of the cases. Lifting and destabilization associated with the interaction between the LLJ and the midlevel circulation assisted in initiating and maintaining the slow-moving MCSs. Based on the cases analyzed in this study and past events described in the literature, a conceptual model of the important processes that lead to extreme rainfall near midlevel circulations is presented.


2020 ◽  
Vol 148 (11) ◽  
pp. 4657-4671
Author(s):  
Kelly M. Núñez Ocasio ◽  
Jenni L. Evans ◽  
George S. Young

AbstractAn African easterly wave (AEW) and associated mesoscale convective systems (MCSs) dataset has been created and used to evaluate the propagation of MCSs, AEWs, and, especially, the propagation of MCSs relative to the AEW with which they are associated (i.e., wave-relative framework). The thermodynamic characteristics of AEW–MCS systems are also analyzed. The analysis is done for both AEW–MCS systems that develop into tropical cyclones and those that do not to quantify significant differences. It is shown that developing AEWs over West Africa are associated with a larger number of convective cloud clusters (CCCs; squall-line-type systems) than nondeveloping AEWs. The MCSs of developing AEWs propagate at the same speed of the AEW trough in addition to being in phase with the trough, whereas convection associated with nondeveloping AEWs over West Africa moves faster than the trough and is positioned south of it. These differences become important for the intensification of the AEW vortex as this slower-moving convection (i.e., moving at the same speed of the AEW trough) spends more time supplying moisture and latent heat to the AEW vortex, supporting its further intensification. An analysis of the rainfall rate (MCS intensity), MCS area, and latent heating rate contribution reveals that there are statistically significant differences between developing AEWs and nondeveloping AEWs, especially over West Africa where the fraction of extremely large MCS areas associated with developing AEWs is larger than for nondeveloping AEWs.


2020 ◽  
Author(s):  
Lijuan Zhang ◽  
Tzung-May Fu

<p>Precipitation over Southern China for the month of April, which is largely associated with mesoscale convective systems (MCSs), has declined significantly in recent decades. It is unclear how this decline in precipitation may be related to the concurrent increase in anthropogenic aerosols in the atmosphere over this region. Using observation analyses and model simulations, we showed that anthropogenic aerosols significantly reduced MCS occurrences by 21% to 32% over Southern China in April, leading to less and weaker rainfall. Half of this MCS occurrence reduction was due to the direct radiative scattering and the indirect enhancement of non-MCS liquid cloud reflectance by aerosols, which stabilized the regional atmosphere. The other half of the MCS occurrence reduction was due to the microphysical and dynamical responses of the MCS to aerosols. The model simulations showed that the higher levels of aerosols and the resulting increase in liquid cloud droplets both enhance the scattering of sunlight, cool the surface, and stabilize the lower atmosphere. As a result, the occurrence of strong convective systems is suppressed, leading to decreased rainfall in April over Southern China. Our results demonstrated the complex effects of aerosols on MCSs via impacts on both convective systems and non-convective cloud systems in the regional atmosphere.</p>


2007 ◽  
Vol 22 (3) ◽  
pp. 556-570 ◽  
Author(s):  
Michael C. Coniglio ◽  
Harold E. Brooks ◽  
Steven J. Weiss ◽  
Stephen F. Corfidi

Abstract The problem of forecasting the maintenance of mesoscale convective systems (MCSs) is investigated through an examination of observed proximity soundings. Furthermore, environmental variables that are statistically different between mature and weakening MCSs are input into a logistic regression procedure to develop probabilistic guidance on MCS maintenance, focusing on warm-season quasi-linear systems that persist for several hours. Between the mature and weakening MCSs, shear vector magnitudes over very deep layers are the best discriminators among hundreds of kinematic and thermodynamic variables. An analysis of the shear profiles reveals that the shear component perpendicular to MCS motion (usually parallel to the leading line) accounts for much of this difference in low levels and the shear component parallel to MCS motion accounts for much of this difference in mid- to upper levels. The lapse rates over a significant portion of the convective cloud layer, the convective available potential energy, and the deep-layer mean wind speed are also very good discriminators and collectively provide a high level of discrimination between the mature and dissipation soundings as revealed by linear discriminant analysis. Probabilistic equations developed from these variables used with short-term numerical model output show utility in forecasting the transition of an MCS with a solid line of 50+ dBZ echoes to a more disorganized system with unsteady changes in structure and propagation. This study shows that empirical forecast tools based on environmental relationships still have the potential to provide forecasters with improved information on the qualitative characteristics of MCS structure and longevity. This is especially important since the current and near-term value added by explicit numerical forecasts of convection is still uncertain.


Sign in / Sign up

Export Citation Format

Share Document